Interfollicular epidermal stem cells self-renew via autocrine Wnt signaling.
نویسندگان
چکیده
The skin is a classical example of a tissue maintained by stem cells. However, the identity of the stem cells that maintain the interfollicular epidermis and the source of the signals that control their activity remain unclear. Using mouse lineage tracing and quantitative clonal analyses, we showed that the Wnt target gene Axin2 marks interfollicular epidermal stem cells. These Axin2-expressing cells constitute the majority of the basal epidermal layer, compete neutrally, and require Wnt/β-catenin signaling to proliferate. The same cells contribute robustly to wound healing, with no requirement for a quiescent stem cell subpopulation. By means of double-labeling RNA in situ hybridization in mice, we showed that the Axin2-expressing cells themselves produce Wnt signals as well as long-range secreted Wnt inhibitors, suggesting an autocrine mechanism of stem cell self-renewal.
منابع مشابه
Senescent Atrophic Epidermis Retains Lrig1+ Stem Cells and Loses Wnt Signaling, a Phenotype Shared with CD44KO Mice
Lrig1 is known to repress the epidermal growth through its inhibitory activity on EGFR, while CD44 promotes it. We analyzed the expression of these molecules in senescent atrophic human epidermis and in the epidermis of CD44KO mice. In normal human epidermis, Lrig1+ cells form clusters located in the basal layer in which CD44 expression is downregulated and Lef1 expression reflects an active Wn...
متن کاملTLR7-expressing cells comprise an interfollicular epidermal stem cell population in murine epidermis
Normal interfollicular epidermis (IFE) homeostasis is maintained throughout the entire life by its own stem cells that self-renew and generate progeny that undergo terminal differentiation. However, the fine markers of the stem cells in interfollicular epidermis are not well defined yet. Here we found that TLR7 identified the existence of progenitors and interfollicular epidermal stem cells in ...
متن کاملWnt/β-catenin signaling promotes self-renewal and inhibits the primed state transition in naïve human embryonic stem cells.
In both mice and humans, pluripotent stem cells (PSCs) exist in at least two distinct states of pluripotency, known as the naïve and primed states. Our understanding of the intrinsic and extrinsic factors that enable PSCs to self-renew and to transition between different pluripotent states is important for understanding early development. In mouse embryonic stem cells (mESCs), Wnt proteins stim...
متن کاملWnt/beta-catenin signaling in cancer stemness and malignant behavior.
Stem cells are defined by their intrinsic capacity to self-renew and differentiate. Cancer stem cells retain both these features but have lost homeostatic mechanisms which maintain normal cell numbers. The canonical Wnt/beta-catenin signaling pathway plays a central role in modulating the delicate balance between stemness and differentiation in several adult stem cell niches such as the hair fo...
متن کاملManipulation of stem cell proliferation and lineage commitment: visualisation of label-retaining cells in wholemounts of mouse epidermis.
Mammalian epidermis is maintained by stem cells that have the ability to self-renew and generate daughter cells that differentiate along the lineages of the hair follicles, interfollicular epidermis and sebaceous gland. As stem cells divide infrequently in adult mouse epidermis, they can be visualised as DNA label-retaining cells (LRC). With whole-mount labelling, we can examine large areas of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Science
دوره 342 6163 شماره
صفحات -
تاریخ انتشار 2013